

# Practical measures for reducing the risk and impact of lettuce fusarium wilt

Dr Tim O'Neill, ADAS

14 December 2017



# Fusarium diseases in the UK

#### **Established**

- Narcissus basal rot
- Pinks wilt
- Cyclamen wilt
- Tomato wilt

#### Emerging (Europe)

- Rocket wilt
- Strawberry wilt
- Gerbera wilt

New

- Basil wilt (1997)
- Tomato FCRR (1999)
- Pepper fruit rot (2000)
- Stocks wilt (2003)
- Hebe wilt (2005)
- Lettuce wilt (2017)



# Overview

- 1. Potential lessons from other crops
- 2. Lettuce fusarium wilt what we know
- 3. Identification and disease monitoring
- 4. Minimising risk and managing the disease
  - (a) Seed health
  - (b) Sanitation and hygiene
  - (c) Soil features affecting wilt
  - (d) Soil disinfestation
  - (e) Fungicides, biofungicides & cultural control
- 5. Integrated management
- 6. Future prospects



### 1. Potential lessons from other Fusarium diseases



#### Narcissus basal rot



Tomato



**Pinks/ carnations** 



Hebe



Cyclamen



Pepper

## Fusarium wilt of column stocks

Fusarium oxysporum f.sp mathiolae



<u>Biology</u>

- Seed-borne
- Persists in soil
- Saprophytic
- Worse in hot weather

#### Management (2017)

- Seed health
- Soil disinfestation
- Less intensive cropping
- Manage debris
- More tolerant cultivars



#### Management measures for some important Fusarium diseases

| Measure              | Nar | Pink | Сус | Tom | Heb | Рер | Sto |
|----------------------|-----|------|-----|-----|-----|-----|-----|
| Seed/stock health    | V   | V    | ?   | ?   | V   | ?   | ?   |
| Sanitation           | V   | V    | V   | V   | V   | V   | V   |
| Disinfection         | V   | V    | V   | V   | V   | V   | V   |
| Rotation             | V   | V    | Х   | Х   | Х   | Х   | Х   |
| Resistance/tolerance | V   | ?    | Х   | V   | Х   | V   | V   |
| Fungicides           | V   | V    | V   | Х   | V   | V   | Х   |
| Biofungicides        | ?   | ?    | ?   | V   | V   | V   | Х   |
| Soil amendments      | Х   | Х    | V   | Х   | Х   | Х   | ?   |
| Soil disinfestation  | Х   | Х    | Х   | Х   | Х   | Х   | V   |
| GH env. control      | Х   | Х    | V   | Х   | V   | V   | V   |

- Key management tool

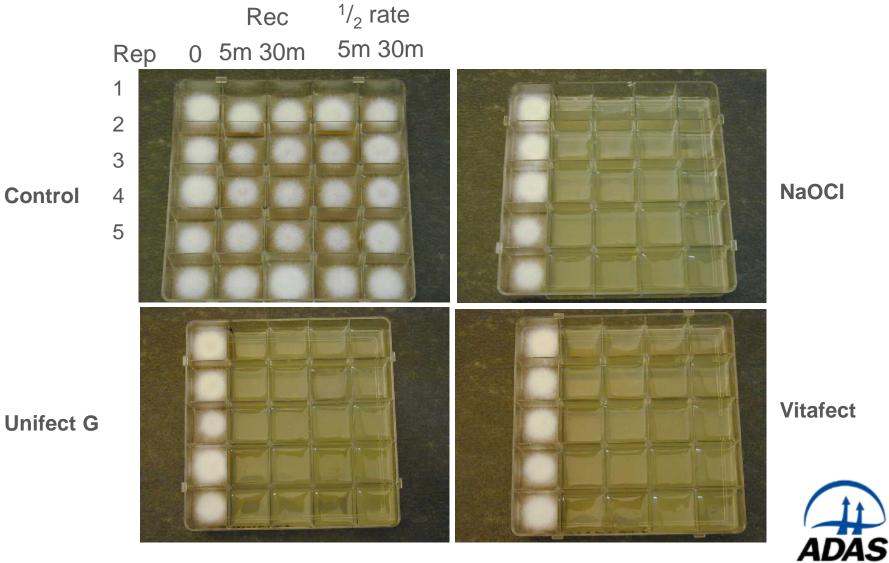
### Lessons - Disinfectants





- Good activity from several products
- Clean surfaces first (peat, debris)
- Cannot use on soil/growing media
- Follow label carefully (e.g. temperature)
- Contact time
- Identify high risk areas
- Persistence in foot/wheel dips




### **Disinfectant tests - Fusarium**

- Products from different chemical groups tested in laboratory bioassays
- Efficacy tested against fusarium spores and mycelium (+/- peat)
- Tested at full label rate and half rate
- Treatment durations of 5 min and 30 min
- Swab tests on treated surfaces

<u>Ref</u>: O'Neill, 2007 (PC 213); Wedgwood, 2015



# **Disinfectants vs Fusarium spores**



# Disinfectant efficacy vs **Fusarium spores**\*

| Product      | Half rate |         | Full rate |         |
|--------------|-----------|---------|-----------|---------|
|              | 5 mins    | 30 mins | 5 mins    | 30 mins |
| Jet 5        | 0         | 0       | 0         | 0       |
| Citrox P     | 0         | 0       | 0         | 0       |
| Disolite     | 0         | 0       | 0         | 0       |
| FAM30        | 0         | 0       | 0         | 0       |
| Hydrocare    | 100       | 10      | 0         | 0       |
| Virkon S     | 20        | 0       | 20        | 0       |
| Unifect G    | 0         | 0       | 0         | 0       |
| Menno        | 100       | 100     | 80        | 40      |
| Florades     |           |         |           |         |
| Domestos EGK | 0         | 0       | 0         | 0       |

#### % wells with growth

\*Macrocondia + microcondia

Ref: E Wedgwood



# Disinfectant efficacy vs **Fusarium** mycelium\*

| Product   | Half rate |     | Full rate |     | Full rate (+ peat) |     |
|-----------|-----------|-----|-----------|-----|--------------------|-----|
|           | 5         | 30  | 5         | 30  | 5                  | 30  |
| Jet 5     | 100       | 90  | 100       | 40  | 100                | 100 |
| Citrox P  | 100       | 100 | 100       | 100 | 100                | 90  |
| Disolite  | 0         | 0   | 0         | 0   | 0                  | 0   |
| FAM30     | 100       | 100 | 100       | 100 | 100                | 100 |
| Hydrocare | 100       | 100 | 100       | 100 | 100                | 80  |
| Virkon S  | 100       | 100 | 100       | 100 | 100                | 100 |
| Unifect G | 0         | 0   | 0         | 0   | 0                  | 0   |
| Menno     | 100       | 100 | 100       | 100 | 100                | 100 |
| Florades  |           |     |           |     |                    |     |
| Domestos  | 0         | 0   | 0         | 0   | 0                  | 0   |
| EGK       |           |     |           |     |                    |     |

% wells with growth

\*Mycelium in paper disc

Ref: E Wedgewood



## Recovery of Fusarium\* after disinfection of different surfaces

| Treatment | Glass | Plastic | Aluminium | Concrete | WGC |
|-----------|-------|---------|-----------|----------|-----|
| Water     | 5     | 5       | 5         | 5        | 5   |
| (control) |       |         |           |          |     |
| Jet 5     | 5     | 1       | 5         | 5        | 5   |
| Citrox P  | 5     | 5       | 5         | 5        | 5   |
| Disolite  | 0     | 0       | 0         | 0        | 0   |
| FAM30     | 5     | 5       | 5         | 5        | 5   |
| Hydrocare | 5     | 5       | 5         | 5        | 5   |
| Virkon S  | 5     | 5       | 5         | 5        | 5   |
| Unifect G | 0     | 0       | 1         | 0        | 0   |
| Menno     | 5     | 5       | 5         | 5        | 5   |
| Florades  |       |         |           |          |     |
| Domestos  | 0     | 5       | 5         | 5        | 5   |

No. of swabs (of 5) with Fusarium

\*Mycelium + 3 spore types

Ref: E Wedgwood



## Effect of hot water treatments on Fusarium chlamydospores

| Treatment   | Warm     | HWT        | No. plates (of 5)<br>with Fusarium<br>growth |
|-------------|----------|------------|----------------------------------------------|
| 1. Control  | -        | 3h, 18°C   | 5                                            |
| 2. Std      | -        | 3h, 44°C   | 5                                            |
| 3. Std +    | -        | 4h, 44°C   | 5                                            |
| 4. Pre warm | 30°C     | 3h, 18°C   | 5                                            |
| 5.          | 30°C     | 3h, 46°C   | 5                                            |
| 6.          | 30°C     | 3h, 47°C   | 5                                            |
| 7.          | 30°C     | 3h, 47.5°C | 5                                            |
| 8.          | 30°C     | 3h, 48°C   | 5                                            |
| 9           | 2h, 44°C | 1h, 47°C   | 5                                            |

Ref: BOF 61a



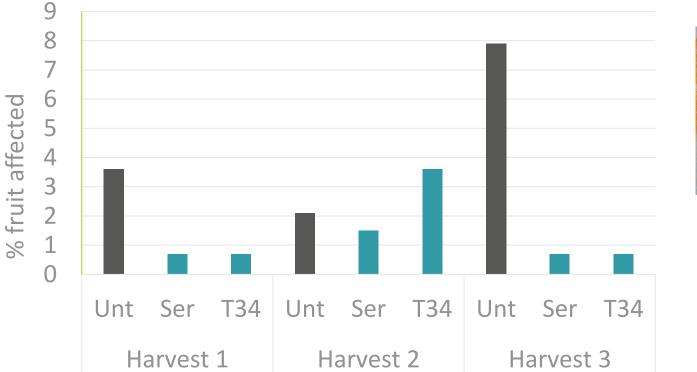
# Effect of disinfectants and a wetter in HWT\* on Fusarium chlamydospores

| Treatment                | No. plates (of 5) with Fusarium growth |
|--------------------------|----------------------------------------|
| 1. Water (control)       | 5                                      |
| 2. Harvest Wash (Clo2)   | 5                                      |
| 3. Citric acid           | 5                                      |
| 4. Silwett L-77 (wetter) | 5                                      |
| 5. FAM30 (iodophor)      | 0                                      |
| 6. Water (18°C)          | 5                                      |

\*3h at 44.4°C

Ref: BOF 61a




# **Disinfectants summary**

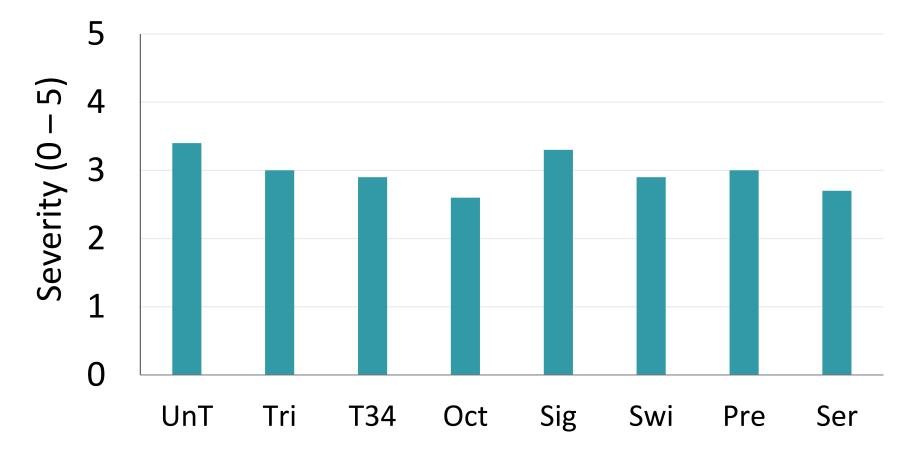
- Easy to kill spores (<5 min)
- Difficult to kill mycelium (longer exposure better)
- Disolite and Unifect G most effective (equivalent products available)
- Peat reduced product activity (see also BOF 77)



# Lessons - Biofungicides

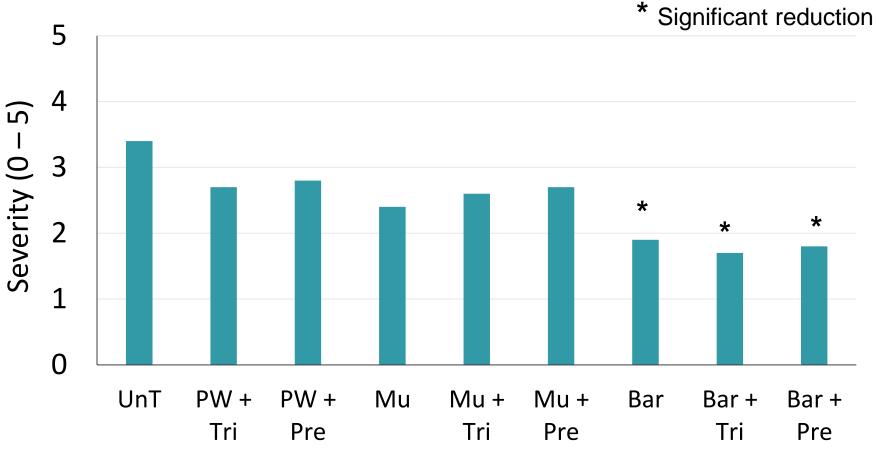
Effect of Serenade ASO and T-34 Biocontrol on pepper fusarium fruit rot- 2016






#### Lessons - Fungicides, biofungicides and soil amendments - 2012






# Fusarium wilt of stocks – Evaluation of fungicides and biofungicides





#### Fusarium wilt of stocks – Evaluation of soil treatments



<sup>&</sup>lt;u>Ref</u>: O'Neill & Mason (2014)



# 2. Lettuce fusarium wilt - what we know

Fusarium oxysporum f.sp. lactucae

# <u>History</u>

- Japan 1955
- California 1990
- Europe (Italy) 2001
- Portugal 2004
- Netherlands 2015
- France 2016
- UK 2017

- (race 1,2,3)
- (race 1)
- (race 1)
- (race 1)
- (race 4)





# Symptoms

- Leaf wilt/yellowing
- Orange to dark streaks in petiole
  & crown (vascular system)
- Stunted growth
- Rotting tap root
- Hollow stem
- Plant collapse





# **Crops affected**

#### <u>Lettuce</u>

- Butterhead
- Romaine (Cos)
- Oak leaf
- Batavia
- Iceberg (Crisphead)
- Lamb's lettuce (possibly)









# Symptomless hosts

- Spinach
- Broccoli
- Cauliflower
- Wilt resistant lettuce

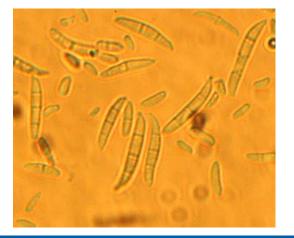


# What is the effect of planting different crops after a fusarium wilt outbreak?

| Сгор           | Symptoms<br>in Crop | Roots infected<br>(0%) | Vascular<br>infection (%) | Quantity of<br>Fusarium<br>(cfu/g cortex ) |
|----------------|---------------------|------------------------|---------------------------|--------------------------------------------|
| <u>Lettuce</u> |                     |                        |                           |                                            |
| Crisphead (S)  | V                   | 100                    | 71                        | 1,312                                      |
| Batavia (R)    | X                   | 100                    | 71                        | 576                                        |
| <u>Other</u>   |                     |                        |                           |                                            |
| Spinach        | X                   | 50                     | 50                        | 12                                         |
| Broccoli       | X                   | 53                     | 0                         | 3                                          |

Ref: Scott et al, 2014

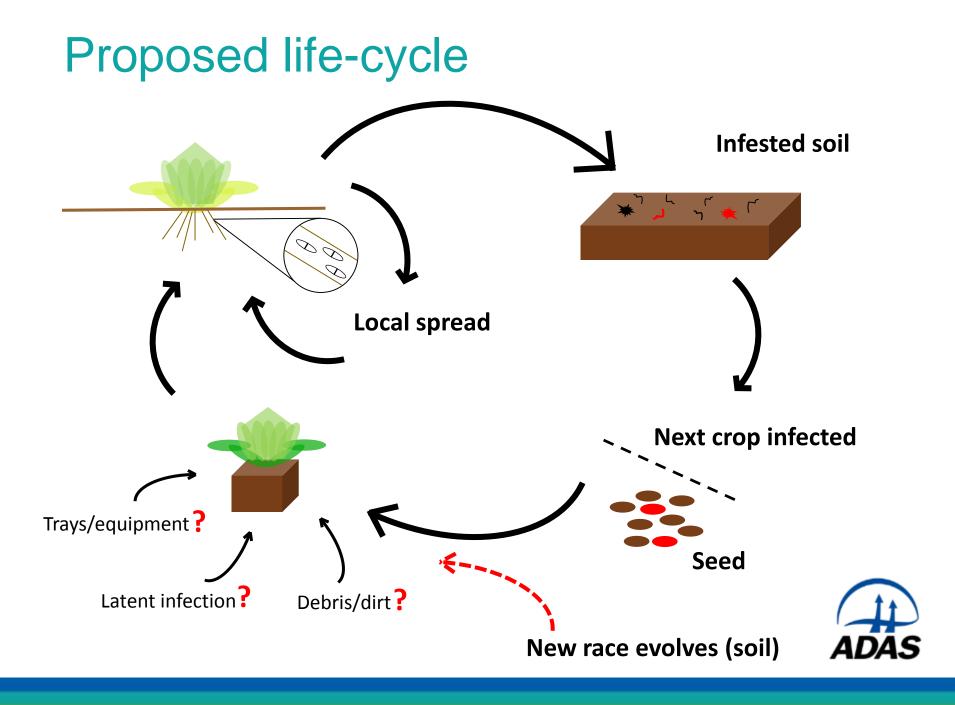



# Key features of lettuce fusarium wilt

- Host-specific
- Vascular wilt disease
- 3 spores types

A

Scott et al. 2010


- Soil temperature greatly affects disease severity
- Long survival in soil (years)
- Saprophytic stage
- Seed-borne
- Major gene resistance
- 4 races identified on lettuce



## Survival of Fusarium (FOM) in crop debris in soil at levels sufficient to cause Fusarium wilt in stocks - 2007

% plants developing wilt 1 2 3 Months after burial

#### Ref: PC 213a



## 3. Identification and disease monitoring









Botrytis

#### Downy mildew

#### Bacterial leaf rot Sclerotinia



Phoma leaf spot



Phoma

basal rot

Pythium sp.



## Lettuce fusarium wilt









### Monitoring and testing

- Inspect crops carefully & regularly
- Send plants for testing if uncertain of cause
- Remove suspect plants & soil (bag in situ)
- Prompt identification and action reduces build-up in soil
- Measuring soil inoculum?



# Measuring Fusarium oxysporum in soil

- 1. Bioassay
- 2. Selective nutrient agar (e.g. Komada's)
- 3. DNA extraction and PCR
  - (+/- ; quantification; community structure)

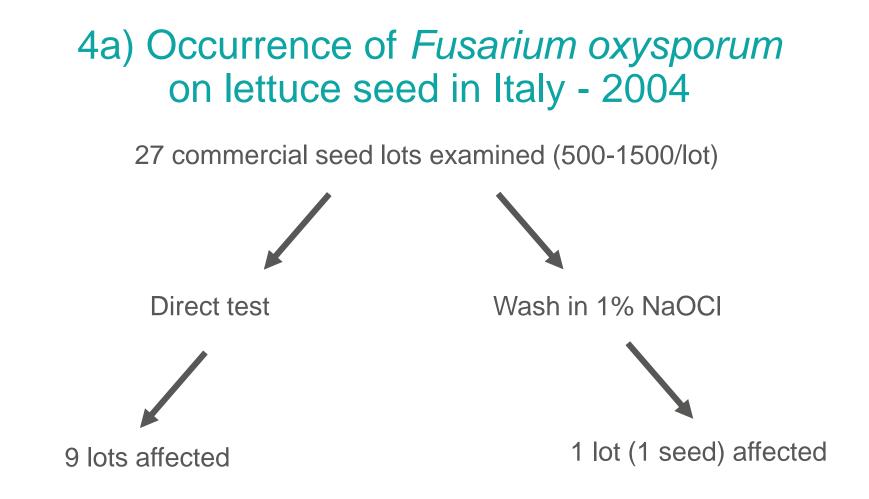
PCR test for detection of Fol race 1 on lettuce seed published





# 4. Minimising risk and managing the disease

- a) Seed health
  - Seed production
  - Seed testing
  - Seed treatment


What is being done?

What can be done?

- b) Sanitation and hygiene
  - Propagation & production
- c) Soil features affecting wilt
- d) Soil disinfestation

e) Fungicides, biofungicides and cultural control





3/16 isolates caused Fusarium wilt following root dip inoculation (1x10<sup>6</sup> spores/ml); symptoms after 8d at 20-30°C.

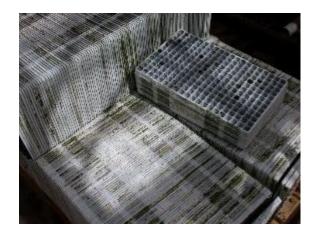


Ref: Garibaldi et al., 2004

# 4b) Sanitation and hygiene - aims

- Stop movement of *Fusarium oxysporum* f.sp. *lactucae* (*Fol*) onto site; minimise movement on site.
- Minimise amount of Fusarium in local environment

- Measures to avoid soil movement (wash + disinfect)
- Maintain procedures even when no crop/symptoms




# Sanitation and hygiene

• Nursery hygiene protocol

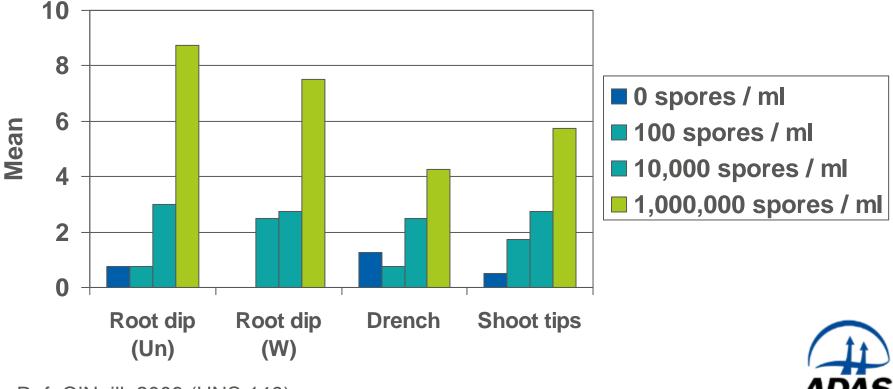
Trays, equipment, visitors

- Crop disposal
  - Prompt ID and removal
  - Leaves, blocks, roots
  - > Propane burner?
- Disinfection
  - Temperature, exposure
- Special attention
  - Unusual/trial varieties







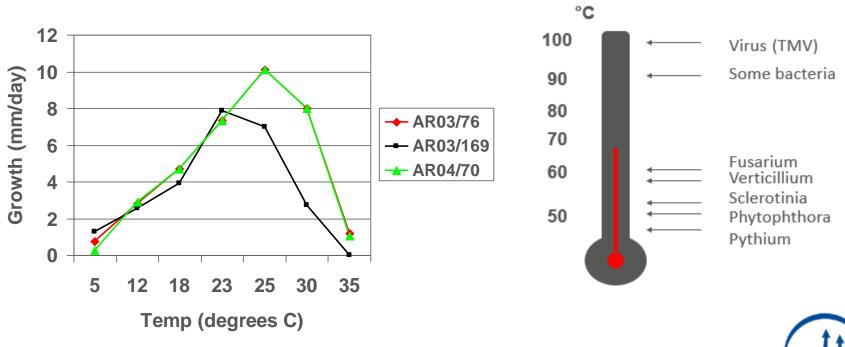

# 4c) How soil features affect risk of fusarium wilt

 Pathogen presence & level \*\*\* Soil temperature \*\* Depth of fusarium in soil \* Soil structure \* Soil microbial community ? Soil type/chemistry ? Soil physical features ?

#### Pathogen presence and level

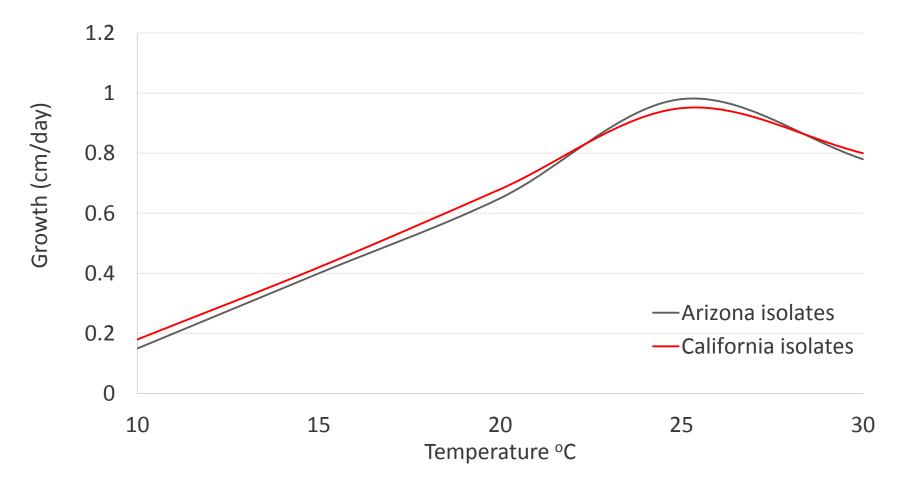
Fusarium wilt in Hebe No. plants affected (12 weeks)






<u>Ref</u>: O'Neill, 2009 (HNS 146)

#### Soil temperature


#### **Fusarium wilt of stocks**

#### Lethal temperatures





## Effect of temperature on growth of *F.oxysporum* f.sp. *lactucae* (race 1 isolate)



# Effect of soil temperature at planting on lettuce fusarium wilt - Arizona

| Temperature at<br>10cm depth (°c) | Plants wilted or dead (%) |         |  |
|-----------------------------------|---------------------------|---------|--|
|                                   | Crisphead                 | Romaine |  |
| 13.9                              | 1.3                       | 0.2     |  |
| 15.0                              | 23.0                      | 0.7     |  |
| 25.6                              | 94.0                      | 34.0    |  |

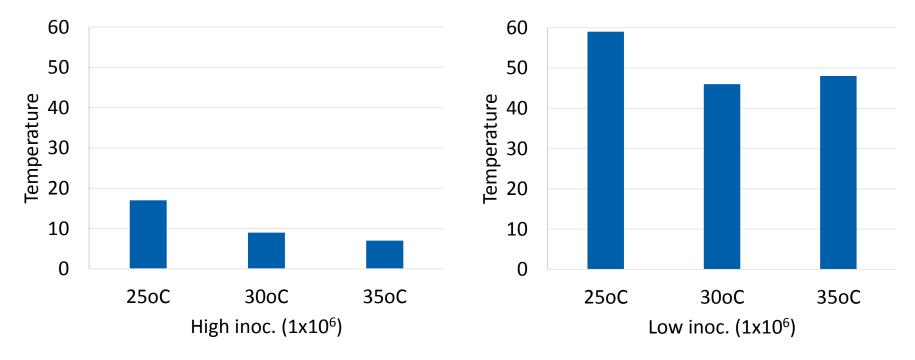
• Belgium observation – infection can occur at 15°C

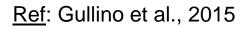
Ref: Matheron, 2015

# Effect of soil temperature on lettuce fusarium wilt – Italy

Number of days to reach DI 90 (0-100 scale)

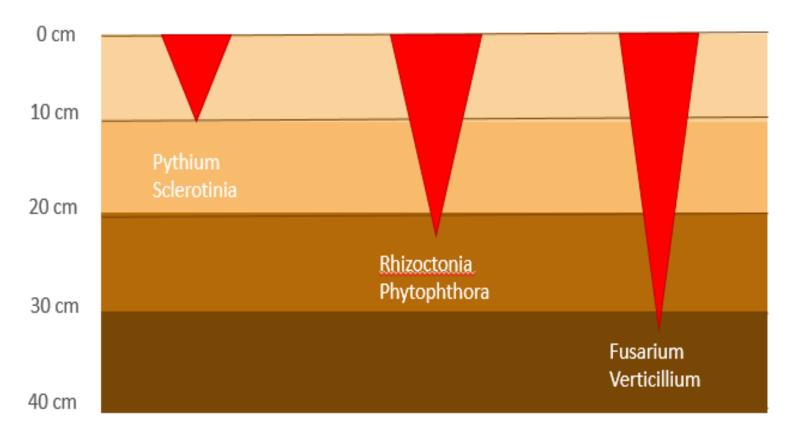
| Temp (°C) | Batavia de<br>serra | Romana velvet | Batavia | Lollo Rosso |
|-----------|---------------------|---------------|---------|-------------|
|           | HS                  | S             | PR      | 'R'         |
| 10        | >100                | >100          | >100    | >100        |
| 15        | >100                | >100          | >100    | >100        |
| 20        | 25                  | >100          | >100    | >100        |
| 25        | 15-20               | 23-32         | >100    | >100        |
| 30        | 8-10                | 12-20         | 36-40   | >100        |


Soil infested at 1x10<sup>6</sup> cfu/ml


Ref: Gullino et al., 2015



## Effect of temperature and inoculum level – lettuce fusarium wilt - Italy


Number of days to reach severe wilt (disease susceptible variety)







#### Soil depth and disease





## Effect of soil structure



- Cloddy soil under gutter



- Fusarium wilt under gutter
- Wetter soils



## 4d) Soil disinfestation

**Physical** 

Sheet steam

Vacuum steam

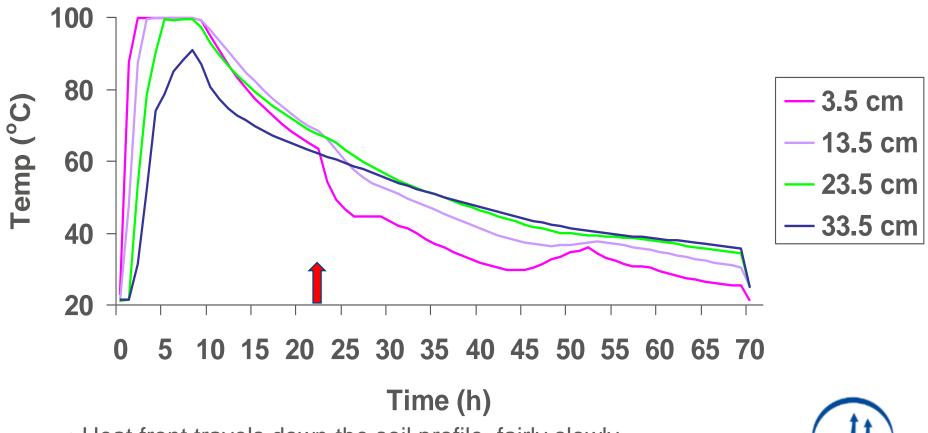
Steam plough

Sandwich steaming

**Chemical** 

Dazomet




#### Pathogen reduction – Soil steaming (Norfolk site)

- Spaded to 35 cm
- Steamed for 10 hours (with thermal fleece)
- Left covered overnight
- Planted after 2-3 days





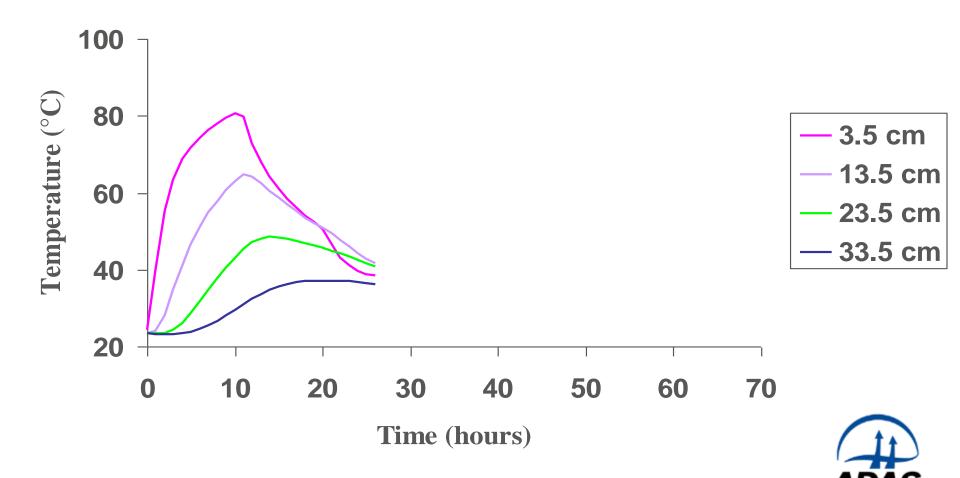
#### Temperatures achieved - sheet steaming (Norfolk)



- Heat front travels down the soil profile, fairly slowly
- Rate of heat loss increases when sheet removed (22h)

## Sheet steaming and depth - % kill

| Depth (cm) | Fus in stem | Fus in root | Sclerotinia |
|------------|-------------|-------------|-------------|
| 0-5        | 94          | 94          | 100         |
| 10 - 15    | 92          | 98          | 100         |
| 20 - 25    | 94          | 100         | 100         |
| 30 - 35    | 92          | 88          | 99          |




## Sheet steaming - Suffolk

- Soil type: medium sandy loam
- Cultivation: spaded to 35 cm, without crumbler bar
- % moisture: 44% FC
- Month treated: September
- Area treated: 400 m<sup>2</sup> (40 m x 10 m)
- Steamed for 12 h, left covered overnight



Sheet steaming and depth: temperatures achieved in bay 2



## Sheet steaming and depth - % kill

| Depth (cm) | Fus in stem | Fus in roots |
|------------|-------------|--------------|
| 0 – 5      | 30          | 81           |
| 10 – 15    | 67          | 96           |
| 20 – 25    | 23          | 59           |
| 30 – 35    | 2           | 8            |

Reduced kill, especially in woody stems, when the soil temperatures are lower



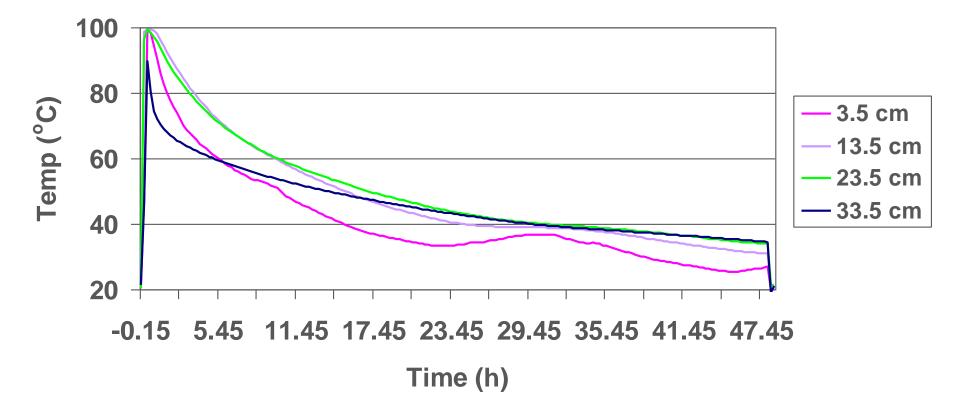


## Vacuum steaming

#### Temperatures achieved with vacuum steaming

- 1. 5h steam. 120 m<sup>2</sup> strip adjacent to inner glasshouse wall. Temperature probes inserted 30 cm from tubes.
- 2. As above, adjacent strip.
- 3. As above, adjacent strip, but probes directly over vacuum tubes.
- 4. 5 ¼ h steam. Probes 30 cm from tube. Boiler tripped after 15 mins.
- 5. 5  $\frac{1}{2}$  h steam (boiler OK), with double suction. Probes 30 cm from tubes.
- 6. 6 ¼ h steam. Probes 30 cm from tube. Double suction. Boiler problem low pressure.
- 7. 3 ¼ h steam. Probes 30 cm from tube. Warm soil either side from previous steams.

| Run | Approx. max. temperature (inlet |      |      | Best location |       |              |              |
|-----|---------------------------------|------|------|---------------|-------|--------------|--------------|
|     | end) at each depth (cm)         |      |      |               |       |              |              |
|     | 3.5                             | 13.5 | 23.5 | 33.5          | Inlet | Mid          | Far-         |
|     |                                 |      |      |               |       |              | end          |
| 1.  | 98                              | 98   | 70   | 50            | V     |              |              |
| 2.  | 98                              | 88   | 52   | 40            |       | $\checkmark$ |              |
| 3.  | 98                              | 90   | 52   | 42            |       |              | $\checkmark$ |
| 4.  | 98                              | 98   | 98   | 80            |       | $\checkmark$ |              |
| 5.  | 98                              | 98   | 90   | 55            |       | $\checkmark$ |              |
| 6.  | 98                              | 98   | 98   | 95            | V     |              |              |
| 7.  | 98                              | 98   | 96   | 94            |       |              | V            |


## Steam plough - Norfolk

- Steam injected at 31 cm depth
- Travels at 10.3 metres/hour
- Requires constant
  attendance
- Soil covered by 4 m sheet (for around 23 mins at any one point)





## Steam plough



Max temp at each depth very similar to sheet steam



## Steam plough and depth: % kill

| Depth (cm) | Fus in stem | Fus in roots | Sclerotinia |
|------------|-------------|--------------|-------------|
| 0 – 5      | 94          | 94           | 97          |
| 10 – 15    | 90          | 92           | 100         |
| 20 – 25    | 98          | 98           | 100         |
| 30 – 35    | 98          | 100          | 100         |



#### The Company: Möschle-Seifert-Dämpftechnik

Specialist for steaming technology and systems



| Products:         | Steaming Technology and Systems<br>For use in : - Horticulture<br>- Agriculture<br>- Viniculture, Industry, etc.    |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Experience:       | More than 60 years in the market<br>One of the world's leading suppliers                                            |
| <b>Customers:</b> | More than 3.000 customers wordwide                                                                                  |
| Partners:         | Barel BV, Niederlande<br>IMANTS BV, Niederlande<br>Josef Zeyer GmbH, Deutschland<br>Clemens GmbH Co.KG, Deutschland |
| Michael Seifert   | email: <u>info@moeschle.de</u>                                                                                      |

#### **Sandwich Steaming**

Fully automated systems



Fully automated steaming robot with sting hood for depth and surface steaming.

Advantages: Energy exposure can be increased to up to 120 kg steam per m<sup>2</sup>/h and only half of the regular steaming time is needed.



#### **Sandwich Steaming**

Fully automated systems



Hydraulic lowering of the sting hood.



## **Chemical fumigants**

Basamid



# Evaluation of Basamid (dazomet) for fusarium wilt in stocks



#### Control of Fusarium in stem pieces (firm vs soft) with Basamid\*

| Depth in soil (cm) | Site 1    |    | Site 2 |  |
|--------------------|-----------|----|--------|--|
|                    | Firm Soft |    |        |  |
|                    |           |    |        |  |
|                    |           |    |        |  |
|                    |           |    |        |  |
| 0                  | 78        | 82 | 100    |  |
| 5                  | -         | -  | 90     |  |
| 15                 | 12        | 54 | 86     |  |
| 30                 | 5         | -  | 80     |  |

\*76g/m2; LDPE cover Ref: PC 249



# 4e) Fungicides, biofungicides, and cultural control

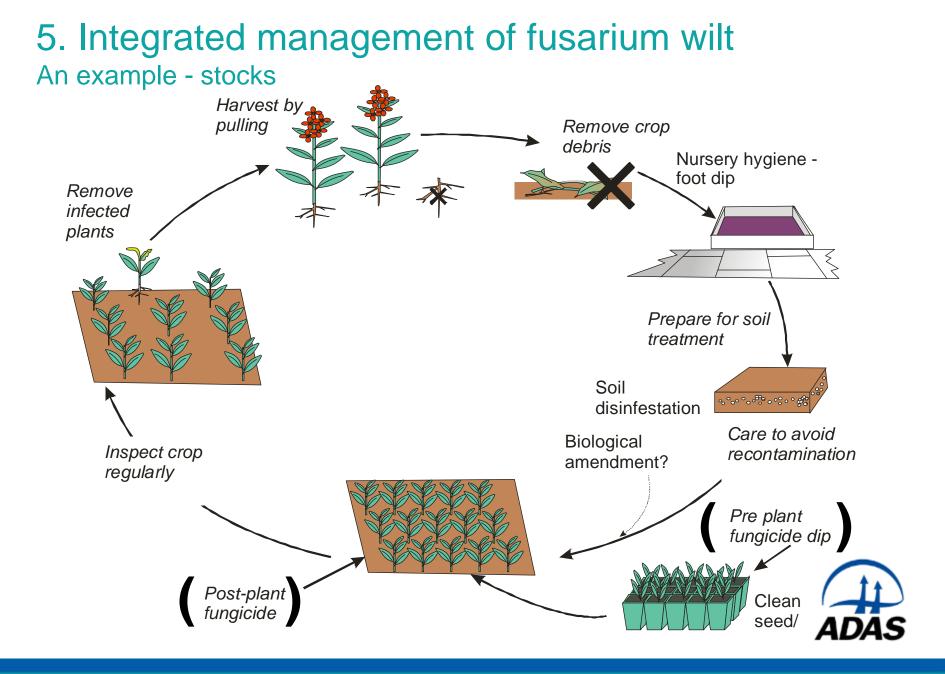
#### <u>Arizona</u>

Products equivalent to Cercobin, Switch & Signum applied at seeding:

No suppression of fusarium wilt in crisphead lettuce

#### Netherlands

Several fungicides and biofungicides tested:


No reduction of infection



## **Cultural control**

- Resistant/tolerant varieties
- Hydroponic systems
  - NFT, float system
- Manage soil temperature
  - Shade screen?
  - Whitewash?
  - White plastic over soil?
- Non-host (in summer)
  - Pak choi
  - Other?
  - Fallow





#### Integrated management of lettuce fusarium wilt likely components and their importance

| Component                    | Now      | Medium term | Long term |
|------------------------------|----------|-------------|-----------|
| Seed health                  | V        | V           | V         |
| Tolerant/resistant varieties | V        | V           | V         |
| Fungicides                   | In prop? | Х           | Х         |
| Biofungicides                | In prop? | (√)         | (v)       |
| Sanitation (crop debris)     | V        | V           | V         |
| Disinfection/burner          | V        | V           | V         |
| Soil amendments              | Х        | (√)         | (√)       |
| Soil disinfestation          | V        | V           | Х         |
| Cultural control             | V        | V           | V         |

- Key management tool

## Key control measures - summary

- Rigorous hygiene protocol
- Remove all plant remains
- Grow resistant varieties (esp. when soil warm)
- Regular crop inspections (+ action)
- Isolate affected areas
- Soil disinfestation
- Consider non-host break crops
- Consider hydroponics/temp. control
- Consider fallow in summer



#### 6. Future prospects – relevant research

- Seed companies lists of resistant varieties
- AHDB Technical Review of lettuce fusarium wilt
- Soil Biology & Soil Health Partnership (2017 2021)
- Biological products & methods



#### Acknowledgments

- AHDB
- David Stokes, Horticulture Consultant
- Ruth D'urban-Jackson, ADAS
- Michael Seifert, MSD

